Welcome to Graph Dataset Repo#

Installation#

Use following commands to install

pip install gridai

Available commands#

Use following command to see available commands.

gridai --help

You will see something like this.

Usage: gridai [OPTIONS] COMMAND [ARGS]...

  Entry point

Options:
  --help  Show this message and exit.

Commands:
  generate-dataset  Command line function to generate geojsons from...
  generate-stats    Function to dump stats around the dataset.

How to create a dataset ?#

The command generate-dataset can convert all opendss models available in the parent folder by recursively searching for all valid opendss models.

gridai generate-dataset -j <system-json-path>

This will create a sqlite db file stroing all training data in pytorch.data.Data format.

How to use the dataset ?#

>>> from torch_geometric.data import SQLiteDatabase
>>> db = SQLiteDatabase(path="dataset.sqlite",name="data_table")
>>> len(db)
51
>>> db[0]
Data(x=[3], edge_index=[2, 2], edge_attr=[2])

Getting NodeObject and EdgeObject#

You can use following snippet to convert node attributes back to an instance of DistNodeAttrs and edge attributes back to an DistEdgeAttrs.

>>> from torch_geometric.data import SQLiteDatabase
>>> from gridai.interfaces import DistNodeAttrs, DistEdgeAttrs
>>> from rich import print
>>> db = SQLiteDatabase(path="dataset.sqlite",name="data_table")
>>> print(DistNodeAttrs.from_array(db[0].x[0]))
DistNodeAttrs(
   node_type=<NodeType.LOAD: 2>,
   active_demand_kw=5.726587772369385,
   reactive_demand_kw=1.691259503364563,
   active_generation_kw=0.0,
   reactive_generation_kw=0.0,
   phase_type=<PhaseType.NS1S2: 11>,
   kv_level=0.1200888529419899
)
>>> print(DistEdgeAttrs.from_array(db[0].edge_attr[0]))
DistEdgeAttrs(
   capacity_kva=25.0,
   edge_type=<DistEdgeType.TRANSFORMER: 1>,
   length_miles=0.0
)

Plotting the dataset#

You can use following command to plot the dataset.

>>> from gridai.plot_dataset import plot_dataset
>>> from torch_geometric.data import SQLiteDatabase
>>> db = SQLiteDatabase(path="dataset.sqlite",name="data_table")
>>> plot_dataset(db[0])

Indices and tables#